
Article https://doi.org/10.1038/s41467-024-53191-8

Enhanced stereodivergent evolution of
carboxylesterase for efficient kinetic
resolution of near-symmetric esters through
machine learning

Zhe Dou 1,2, Xuanzao Chen1, Ledong Zhu3, Xiangyu Zheng1, Xiaoyu Chen1,
Jiayu Xue1, Satomi Niwayama 4, Ye Ni 1 & Guochao Xu 1,5

Carboxylesterases serve as potent biocatalysts in the enantioselective synth-
esis of chiral carboxylic acids and esters. However, naturally occurring car-
boxylesterases exhibit limited enantioselectivity, particularly toward ethyl 3-
cyclohexene-1-carboxylate (CHCE, S1), due to its nearly symmetric structure.
While machine learning effectively expedites directed evolution, the lack of
models for predicting the enantioselectivity for carboxylesterases has hin-
dered progress, primarily due to challenges in obtaining high-quality training
datasets. In this study, we devise a high-throughput method by coupling
alcohol dehydrogenase to determine the apparent enantioselectivity of the
carboxylesterase AcEst1 from Acinetobacter sp. JNU9335, generating a high-
quality dataset. Leveraging seven features derived from biochemical con-
siderations, we quantitively describe the steric, hydrophobic, hydrophilic,
electrostatic, hydrogen bonding, andπ-π interaction effects of residues within
AcEst1. A robust gradient boosting regression treemodel is trained to facilitate
stereodivergent evolution, resulting in the enhanced enantioselectivity of
AcEst1 toward S1. Through this approach, we successfully obtain two stereo-
complementary variants, DR3 and DS6, demonstrating significantly increased
and reversed enantioselectivity. Notably, DR3 and DS6 exhibit utility in the
enantioselective hydrolysis of various symmetric esters. Comprehensive
kinetic parameter analysis, molecular dynamics simulations, and QM/MM
calculations offer insights into the kinetic and thermodynamic features
underlying the manipulated enantioselectivity of DR3 and DS6.

Enzymes have garnered considerable attention in the realmsof synthetic
biology and biocatalysis, being widely hailed as the preferred choice for
the biosynthesis of optically active chemicals1–4. The intricate stereo-
chemical structures of enzymes often manifest in distinctive spatial,
hydrophobic, and electrostatic properties, particularly within the active
center, forming the basis for high stereoselectivity5–7. However, enzymes

face challenges maintaining high stereoselectivity, especially when
confronted with substrates boasting nearly symmetric structures8–10.
These substrates are commonly deemed “hard-to-be-discriminated,” not
only by chemical catalysts but also by biocatalysts11,12.

Chiral cyclohex-3-ene-1-carboxylic acid (CHCA, P1) features a
nearly symmetric hexatomic ring, serving as a crucial building block
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for synthesizing a diverse array of pharmaceuticals, agrochemicals,
and natural products (Fig. 1A). Compared to cyclohexane, cyclohex-
adiene, and phenyl groups, P1 often exhibits distinctive biological
activities due to their unique cyclohexene structure13. Enantiomeric
pairs of P1 showcase applicability, with both enantiomers serving as
versatile building blocks. For example, (S)-P1 is utilized in the synthesis
of Edoxaban, an effective oral medication for treating venous throm-
bosis and surgical bleeding through the inhibition of coagulation fac-
tor Xa14,15. Other significant applications include the synthesis of
immunosuppressant FK-50616, aglycone of antitumor drug
(+)-phyllanthocin17, toxin pumiliotoxin C18, and repellent SS22019, etc.
Conversely, (R)-P1 forms the pivotal building block of Oseltamivir, a
widely used oral antiviral drug for treating influenza A by inhibiting
neurosine glycosidase20. It has also been applied to the natural pro-
ducts leustroducsin B21, phyllanthocin22, potential antibacterilas23, and
E-selectin antagonists24. Because of their structural similarities with
only minor differences in the position of C=C that is distant from the
chiral center, distinguishing between (S)- and (R)-P1 proves challen-
ging for both chemical and biological catalysts.

Current chemical approaches for synthesizing chiral P1 involve
cumbersome resolution steps and necessitate large amounts of chiral
reagents and hazardous organic solvents25,26, resulting in low atomic
economy and environmental concerns (Fig. 1B). Biocatalytic synthesis
of chiral P1 presents its own set of challenges. Non-symmetric esters

with varying substituent sizes are relatively easily discriminated by the
substrate binding pocket, which excludes the incompatible config-
uration due to steric hindrance or unfavorable repulsive force
(Fig. 1C)27. However, discriminating nearly symmetric P1 esters proves
challenging for the substrate binding pocket, as the differences
between (R)- and (S)-esters are minor (Fig. 1D)28. Commercial enzymes
such as Novozym 435 and pig liver esterase (PLE) exhibit no selectivity
in discriminating (S)- and (R)-P1 esters28. While carboxylesterase BioH
is reported to possess activity toward P1 esters, its low E value of
merely 2.1 necessitated the iterative construction of a triple mutant,
resulting in an increased E value of 7.1 at a 40mM substrate
concentration29. However, further concentration increases led to a
significant decrease in stereoselectivity. Consequently, the enantiose-
lective synthesis of chiral P1 and esters remains a formidable chal-
lenge, posing difficulties for both chemical and biocatalysts alike.

Directed evolution plays a pivotal role in expediting the devel-
opment of stereoselective enzymes, employing diverse strategies
categorized as quantity-intensive and quality-intensive approaches4,30.
Quantity-intensive strategies involve random mutagenesis across the
entire sequence space31. This approach necessitates a reliable high-
throughput screening (HTS) method with an ideal throughput
exceeding 1 × 107 mutants/day32. However, the use of chromogenic or
electronic substrate analogs in HTS may deviate from research
objectives, especially in evolving catalytic activity, enantioselectivity,
and substrate specificity. Quality-intensive approaches focus on
rational or semi-rational mutagenesis using restricted genetic codons
to construct a “smart library”33,34. Identifying potential hotspots is
crucial for these approaches and is usually determined through
empirical, experimental, or computational analysis. While quality-
intensive approaches are effective, they may face challenges when
dealing with “hard-to-be-discriminated” substrates.

Machine learning (ML) emerges as an alternative, offering a more
direct shortcut for boosting directed evolution based on extensive
high-quality data and statistical models35,36. ML, being data-driven, can
identify catalytic patterns, predict promising mutants, and excel in
predicting new substitution combinations for directed evolution37. ML
has found application in manipulating the activity, thermostability,
and stereoselectivity of various enzymes, including epoxide
hydrolases38, imine reductase39, P450 monooxygenase40, and
transaminases41. The success of ML predictors depends on the quality
of the training dataset41, with recent efforts by Ran et al. showing
promise in predicting enantiomeric excess ratios of hydrolases toward
non-symmetric substrates, with positive prediction of 18 out of 28
reactions42. The positive prediction ratio was 64%, which might be
attributed to the low-quality dataset of hydrolase-catalyzed kinetic
resolution reactions, lower in the case of nearly symmetric substrates.
Hence, the generation of high-quality dataset and the selection of
suitable descriptors are the key to the success of ML predictors.

In this study, we present the establishment of a high-throughput
method to generate a high-quality dataset for carboxylesterase
AcEst143 fromAcinetobacter sp. JNU9335 using the “real substrate” ethyl
cyclohex-3-ene-1-carboxylate (CHCE, S1), characterized by its nearly
symmetric structure. Subsequently, we constructed an ML predictor
utilizing features extracted frombiochemical considerations of AcEst1.
The trained ML predictor was then applied to design combinatorial
mutants. Finally, we successfully achieved stereodivergent evolution
of AcEst1, resulting in the generation of two stereocomplementary
mutants. These mutants were further employed in the synthesis of
both enantiomers of chiral S1.

Results
Development of a high-throughput method to obtain a high-
quality enantioselectivity dataset
Enantiomeric excess (e.e.) is a commonly used parameter to gauge the
enantioselectivity of given enzymes. However, when dealing with

Fig. 1 | Pharmaceuticals containing the moiety of P1 and the asymmetric
synthesis of chiral P1 derivatives. Pharmaceuticals with chiral P1 as the key
building block (A), industrial synthesis of chiral P1 by chemical resolution using
chiral 1-phenylethane-1-amines as resolution reagents (B), enantioselective dis-
crimination of non-symmetric esters (C), and nonselective accommodation of
nearly symmetric esters (D) in the active center of enzymes.
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hydrolases that exhibit low enantioselectivity, particularly toward
nearly symmetric substrates, e.e. proves to be an ineffective parameter
as its values fluctuate during reaction44. To address this limitation and
devise a high-throughput method for obtaining a high-quality dataset
of enantioselectivity, we adopted the ratio of initial reaction rates
between (R)- and (S)-S1, referred to as the apparent enantioselectivity
(Eapp). This approach relies on the “real substrate” and accurately
mirrors the actual reactiondynamics (Fig. 2A). The initial reaction rates
toward (R)- and (S)-S1 were determined by coupling the hydrolytic
reaction with an oxidative reaction catalyzed by alcohol dehy-
drogenase (ADH). An ideal ADH for this method should possess the
following characteristics: (1) NADP+-dependent instead of NAD+-
dependent to eliminate background interference; (2) high catalytic
efficiency (kcat/KM), even at lower ethanol concentrations. Conse-
quently, genome mining and rational mutagenesis were employed to
identify an NADP+-dependent ADH with high kcat/KM.

At high ethanol concentration (800mM), NADP+-dependent ADH6
proved the most efficient, displaying a specific activity as high as 421.2
U·g−1 (Fig. 2B), while at lower ethanol concentration (2mM), NADP+-
dependent ADH10 from Kluveromyces polysporus exhibited the highest
specific activity of 9.3 U·g−1. However, the activity of ADH10 was low and
required high loading, which was deemed unsatisfactory for developing
a high-throughput method to determine Eapp. To address this limitation,
ethanol was docked into the active center of ADH10 (PDB: 5Z2X), and
residues surrounding ethanolwere identified (Fig. 2C). In response to the
insufficient activity, rational mutagenesis was undertaken to manipulate
the hydrophobic interaction and steric hindrance between the methyl
group of ethanol and ADH10. Mutations were introduced, turning them
into Cys, Phe, Leu, Ile, and Val. Five single mutants, including V84L, V84I,
F197L, F197V, and F197I, were obtained, displaying higher activity toward
ethanol (Fig. 2D). Among these, F197V proved to be the most efficient,
with a specific activity of 17.1 U·g−1. Consequently, double mutants
ADH10V84L/F197V and ADH10V84I/F197V were constructed, with ADH10V84L/

F197V displaying a synergistic effect, exhibiting a specific activity of 70.4
U·g−1, approximately 7.6-fold higher than ADH10. Kinetic parameters
analysis revealed that ADH10V84L/F197V not only demonstrated increased
ethanol binding affinity with a KM value of 2.3mM, much lower than
55.9mM of WT, but also enhanced catalytic activity, with a kcat of
5.7min−1. The kcat/KM of ADH10V84L/F197V was significantly increased to
2.4min−1·mM−1 from 0.1min−1·mM−1 of WT. The impressive performance
of ADH10V84L/F197V encouraged further optimization of conditions for
high-throughput determination of Eapp of AcEst1.

Various factors, including ADH dosage, NADP+ concentration, pH,
and S1 concentrations, were systematically investigated. In Fig. 2E, the
changes in A340 were similar at ADH dosages higher than 7.5 U·mL−1.
With an increase in NADP+ concentrations from 2.0 to 5.0mM, the
slopes of A340 increased accordingly until exceeding 4.0mM. The
effect of S1 concentrations was also explored, and the slopes of A340

increased steadily until reaching 5.0mM S1. Although a further
increase in S1 concentration would result in a higher A340 slope, the
low solubility of S1 might interfere with the coupled reaction. Conse-
quently, an ADH dosage of 7.5 U·mL−1, NADP+ concentration of 4mM,
and S1 concentration of 5.0mM were adopted as the optimum con-
ditions for the high-throughput method. Subsequently, the feasibility
of this method was evaluated using the entire plate of AcEst1. The
average Eapp of WT was 4.1 ± 0.3, with a CV of less than 8%. This high-
throughput method, based on a “real substrate,” was developed to
obtain a high-quality dataset on the enantioselectivity of AcEst1.
Importantly, this method can be extended to characterize other
hydrolases with ethanol as the byproduct.

Development of ML predictors for enantioselectivity of AcEst1
toward S1
To gather a diverse and high-quality dataset on the enantioselectivity
ofAcEst1mutants for constructing anMLpredictor, 20 unconservative

residues located in the first and second layers surrounding the cata-
lytic S201 were identified for saturation mutagenesis (Fig. 3A).
Degenerative codons of 22c-trick45 including NDT (A/T/C/G, A/T/G, T),
VHG (A/C/G, A/T/C, G), and TGGwere utilized atmolar ratio of 12:9:1 to
develop the unbiased library, and a 3-fold excess of mutants was
evaluated at eachposition to ensure the >95% coverage and the quality
of library. A total of 1920 mutants were subjected to determining Eapp
values using the high-throughput method. Mutants from I82, V133,
Y228, V230, D253, V254, V257, L297, and V328 exhibited significantly
enhanced Eapp values, while mutants from F66, I82, T248, L247, L249,
V254, T258, L297, V328, and N329 displayed decreased Eapp values
(Fig. 3B). Among all the single mutants, V257M and L297F had Eapp
values of 9.8 and 0.8, respectively, ranking as the highest and lowest
records. After manually removing the data of deactivated mutants, a
high-quality dataset containing 760 out of 1920mutants was obtained
for training ML models.

While ML is recognized for its potential in advancing directed
evolution, its effectiveness is often hindered by incompatible
descriptors or features46. In this study, biochemical features, including
volume (feature #1), hydrophobicity (feature #2), hydrophilicity (fea-
ture #3), electrostatic (feature #4), hydrogen bond (feature #5), π-π
interaction (feature #6), and distance to catalytic residue (feature #7),
based on 1-D sequence from biochemical considerations, were intro-
duced in this study (Fig. 3C). The use of atom numbers or SMILES
format of amino acids as one feature is common. However, this feature
is inaccurate for describing the properties of residues, as there is no
linear relationship between atom number and spatial volume. For
instance, Phe and Lys have the same spatial volume but different
molecularweights. Therefore, spatial volumewas selected as a feature.
The hydrophobicity of the active center is crucial for enzyme perfor-
mance. Both the hydrophobicity index47 denoting hydrophobicity
(feature #2) and the Kyte-Doolittle hydropathy scale48 denoting
hydrophilicity (feature #3) were introduced as features to describe the
hydrophobic interactions. The isoelectric point of an amino acid
(feature #4) was selected to describe electrostatic properties. Hydro-
gen bonding was described by the number of electronegative atoms,
such as O and N (feature #5). Stacking interactions, including π-π or
alkyl-π interactions, were represented by the number of double bonds
(feature #6). Moreover, the distance to nucleophilic S201 was also
introduced as feature #7. These features from experimental and bio-
chemical considerations were first introduced in the ML model, pro-
viding a robust foundation for training the ML predictor.

VariousML algorithms have been employed to address biocatalytic-
related challenges, including Kernel Ridge Regression (KRR), Gaussian
Process Regression (GPR), Gradient Boosting Regression Tree (GBRT),
Random Forest Regression (RFR), Support Vector Regression (SVR), and
Bayesian Ridge Regression (BRR)35,49. However, no single algorithm is
universally optimal for all tasks. Consequently, we assessed the perfor-
mance of six regression models in correlating the enantioselectivity of
AcEst1 with seven features, namely GBRT, GPR, KRR, RFR, SVR, and BRR.
The dataset was randomly divided into a training set (80%) and a testing
set (20%), and hyperparameters were tuned for each model. Subse-
quently, the learningprocesswas executedusing the high-quality dataset
and the aforementioned models. Based on the regression results, GBRT
outperformed GPR, KRR, RFR, SVR, and BRR. The coefficient of deter-
mination (R2) between predicted and experimental Eapp values of the
GBRT model reached a high value of 0.93, with a Mean Square Error
(MSE) of 0.12 (Fig. 3D). Landscape analysis revealed a smooth distribu-
tion of data, indicating the excellent performance of GBRT. KRR, SVR,
and BRR were ineffective in predicting the Eapp of AcEst1, exhibiting
lower R2 values (below 0.55), and almost all the Eapp values were under-
estimated. RFR showed better performance thanGPR, with higherR2 and
lower MSE. However, RFR’s ability to predict mutants with elevated Eapp
was less robust than GBRT and GPR. The performance of the GBRT
model aligned with data-driven protein engineering for the activity and
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Fig. 2 | Development of a high-throughput method for determining the
enantioselectivity value of AcEst1 toward ‘real substrate’. A Scheme of the
coupled hydrolytic and oxidative reactions for spectrophotometrically determin-
ing the Eapp value. B Genome mining of alcohol dehydrogenases. C Residues in
ADH10 surrounding ethanol for mutagenesis, yellow stick: catalytic triad, green
stick: substrate ethanol, cyan stick: residues for mutagenesis. D Hydrophobic

mutagenesis result and kinetic parameter analysis of WT and ADH10V84L/F197A, WT
was highlighted with a black border. E Effect of ADH dosage, NADP+ and S1 con-
centrations on the high-throughput method. n = 3 independent biological experi-
ments. Data are presented as mean values ± SD. Source data are provided as a
Source Data file.
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stereoselectivity of transaminase, achieving an R2 of 0.80341. The higher
R2 in our model can be attributed to the high-quality dataset and incor-
poration of biochemical features. Attempts to reduce the number of
features and retrain the GBRT model resulted in decreased correlation,
proving the synergistic effect of these seven features (Supplementary
Figs. S34, S35).

To enhance the accuracy of the trained GBRT predictor, we sys-
tematically combined advantageous single mutants to generate dou-
blemutants. All singlemutantswith increased or decreased Eapp values
were paired, resulting in various double mutants. Notably, V257M/
Y228M stood out with the highest Eapp value of 13.8, while L297F/
L249A displayed the lowest Eapp value of 0.36. The incorporation of
these double mutants further enriched the dataset used for retraining
the GBRT model. The GBRT predictor was then retrained using both
the single and doublemutants (Fig. 4A). The retrained GBRT predictor
demonstrated exceptional performance, achieving an R2 of 0.97 with
an MSE of 0.11, indicative of a robust regression. The remarkable
performance of the trained GBRT predictor instilled confidence in its
application to guide combinatorial mutagenesis for the stereo-
divergent evolution of AcEst1.

ML guided stereodivergent evolution of AcEst1
Considering that V257M and L297F were the single mutants with the
highest and lowest Eapp values, theywere selected as starting points for

the stereodivergent evolution of (R)-selective and (S)-selective AcEst1
mutants. Consequently, V257M and L297F were designated as DR1 and
DS1, respectively. For the (R)-selective evolution, wepredicted the Eapp
values of all doublemutants starting with DR1 and incorporating other
mutations (I82M, V133S, Y228M, V230W, D253H, V254Q, V257M, and
L297I) with increased Eapp (Fig. 4B). DR1/Y228M (DR2) emerged as the
most (R)-selective, consistentwith experimental results. Subsequently,
we predicted the Eapp values of triple mutants starting from DR2,
leading to DR2/I82M (DR3) with an impressive Eapp of 18.2. We further
forecasted the Eapp values of quadruple mutants based on DR3,
includingDR3/V133S, DR3/D253H, DR3/V254Q, andDR3/L297I. V230W
was excluded due to the lack of a synergistic effect. As depicted in
Fig. 4B, the predicted Eapp values of quadruplemutants were all higher
than their corresponding triple, double, and single mutants, suggest-
ing a synergistic effect among them. However, none of the quadruple
mutants exhibited predicted Eapp values surpassing DR3, which can be
attributed to the limited contributions of V133S, D253H, V254Q, and
L297I. To validate the accuracy of the GBRT-predicted results, we
experimentally constructed DR1, DR2, and DR3, determining their
enantioselectivity values (E value) through resolution reactions. The E
values progressively increased from 7.3 forWT to 40.1 for DR1, 59.1 for
DR2, and 103 for DR3 (Fig. 4D). Quadruple mutants, such as DR3/
V254Q and DR3/L297I, were also experimentally constructed; how-
ever, their E values were lower than DR3, aligning with the prediction

Fig. 3 | High-quality site-specific saturation mutagenesis result and develop-
ment of machine learningmodel for predicting the Eapp value ofAcEst1. A First
and second layer of residues surrounding catalytic S201. B HTS result of site-
specific saturation mutagenesis library. C Features defined for machine learning of

enantioselectivity of AcEst1. D Regression performance of different regression
models on the training and testing sets. n = 3 independent biological experiments.
Data are presented as mean values ± SD. Source data are provided as a Source
Data file.
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result. The developed DR3 thus represents a promising biocatalyst
with excellent enantioselectivity in the resolution of near-
symmetric S1.

The successful guidance of (R)-selective evolution further moti-
vated us to assess the applicability of the trainedGBRTpredictor in (S)-
selective evolution. To depict the evolution pathway more clearly, the
reciprocal of the predicted Eapp ((S)-S1/(R)-S1) was adopted for (S)-
selective evolution (Fig. 4C). Among all the single mutants, only L297F
exhibited an Eapp value lower than 1.0, indicating reversed (S)-selec-
tivity. Therefore, L297wasdesignated asDS1 and served as the starting
point for (S)-selective evolution. All the singlemutants with Eapp values
lower than WT, including L247F, T248W, L249A/I, V254K, T258A, and
N329F, were added to DS1 to form double mutants. Among all the
double mutants, the reciprocal of the predicted Eapp value for DS1/
L249A was 2.8, ranking the highest. Consequently, DS1/L249A was
designated as DS2a and subjected to triple mutation. Other mutations
were iteratively added to DS2a to predict their Eapp values. DS2a/

T248Wdisplayeda reciprocalpredicted Eapp of 3.0, slightlyhigher than
DS2a, and was regarded as DS3 for further combination. The quad-
ruple mutant DS3/T258A (DS4) exhibited increased enantioselectivity
and was combined with other mutations to form quintuple mutants.
DS4/V254K showed the highest (S)-selectivity among all the quintuable
mutants and was regarded as DS5. Furthermore, L247F and N329F
were introduced inDS5, resulting inDS5/N329F (DS6)with a reciprocal
of predicted Eapp value as high as 5.9 toward (S)-S1, even higher than
the 4.1 of WT toward (R)-S1, implying the concrete reversal of the
enantioselectivity of AcEst1 from (R)-selective to (S)-selective.

Although the single mutant L247F exhibited decreased enantios-
electivity compared to WT, its contribution to (S)-selectivity was lim-
ited. The reciprocal predicted Eapp values of different combinatorial
mutants containing L247F were overall increased while locally
decreased (Fig. 4C), suggesting the existence of an antagonistic effect.
The introduction of L247F in DS6 resulted in decreased enantioselec-
tivity. DS1-DS6 predicted by the GBRT model was experimentally

Fig. 4 | ML guided stereodivergent evolution of (R)- and (S)-selective AcEst1
mutants. A Refined GBRT using double mutants, red dot: single mutant, purple
dot: double mutant. B GBRT guided (R)-selective evolution. C GBRT guided (S)-

selective evolution. D Experimental validation of (R)- and (S)-selective AcEst1
mutants. n = 3 independent biological experiments. Data are presented as mean
values ± SD. Source data are provided as a Source Data file.
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constructed and evaluated in the resolution of rac-S1. The E value of
DS1was −1.6, reversed from the 7.3 ofWT. Since DS2a (DS1/L249A) and
DS2b (DS1/L249I) had similar predicted Eapp values, both were inves-
tigated, and DS2a displayed a lower E-value of −4.2. From DS3 to DS6,
the E value further decreased from −5.7 to −11, significantly lower than
WTAcEst1. Although the enantioselectivity ofDS6 is not as high asDR3,
it is quite a significant change for AcEst1, considering the nearly sym-
metric structure of (R)- and (S)-S1. Stereodivergent evolution of AcEst1
toward nearly symmetric esters has been achieved using this trained
GBRT predictor.

Characterization of stereocomplementary AcEst1 mutants
To gain a deeper understanding of enantioselectivity manipulation,
kinetic parameters of AcEst1 mutants toward (R)- and (S)-S1 were
meticulously characterized (Table 1). The WT AcEst1 exhibited kcat/KM

values toward (R)- and (S)-S1 of 156.2 and 13.0 s−1·mM−1, respectively,
with a resulting calculated ratio of 12.0. Notably, the (R)-selective DR3
mutant displayed kcat/KM values of 9.8 and 0.1 s−1·mM−1 toward (R)- and
(S)-S1, respectively, leading to a drastically increased ratio of 123.3,
approximately 10.3-fold higher than WT, aligning with the observed E
value. DR3 exhibited kcat values toward (R)- and (S)-S1 of 60.6 and
0.7 s−1, respectively, with a ratio of 92, significantly surpassing the 6.2
ofWT. In terms of kinetic dynamics, the substantial decrease in the kcat
value of DR3 toward (S)-S1 is pivotal for its heightened enantioselec-
tivity. Deconvolution analysis indicated elevated kcat/KM ratios for
V257M and Y228M (59.0 and 32.9, respectively) compared to WT,
suggesting their significant contributions to enhanced enantioselec-
tivity. I82M exhibited a modest increase in the kcat/KM ratio (13.0).

Kinetic parameter and deconvolution analysis of the (S)-selective
DS6 were also conducted. The kcat/KM value of DS6 toward (R)-S1 sig-
nificantly decreased to 0.7 s−1·mM−1 from the 156.2 s−1·mM−1 of WT,
indicating a substantial reduction in catalytic efficiency toward (R)-S1.
Meanwhile, the kcat/KM value of DS6 toward (S)-S1 was 4.0 s−1·mM−1,
with a kcat/KM ratio of (S)-S1 to (R)-S1 of 5.4, around 67.6-fold higher
than that of WT, in agreement with the reversed E value of DS6.
Deconvolution analysis revealed that L297F exhibited the highest kcat/
KM ratio of 1.7. While L297F maintained the same kcat/KM value of
13.3 s−1·mM−1 toward (S)-S1 as WT, it drastically decreased the kcat/KM

value to 7.6 s−1·mM−1 toward (R)-S1. Additionally, L249A also displayed
a higher kcat/KM ratio of 1.1, about 13.5-fold higher thanWT. In contrast
to L297F and L249A, single mutants T248W, T258A, and V254K
exhibited increased catalytic efficiency toward (S)-S1, surpassing the
increment toward (R)-S1. T248W, T258A, and V254K contributed not
only to the increased (S)-selectivity but also to the catalytic efficiency
of DS6. T248W and N329F were beneficial for the enhanced binding
affinity ofDS6 toward (S)-S1. From theperspective of kinetic dynamics,
the significantly decreased catalytic efficiency toward (R)-S1 and
enhanced binding affinity toward (S)-S1 are both crucial for the (S)-
selectivity of DS6.

The kcat/KM values of DR3 and DS6 were significantly lower than
that of WT, hinting at a “trade-off” effect between activity and enan-
tioselectivity toward the near-symmetric ester. This could be attrib-
uted to the physical and chemical effects since the catalytic efficiency
of WT AcEst1 (kcat of 675.3 s−1) is so high that hard to accurately dis-
criminate (R)- and (S)-S1 with nearly symmetric structure. However, it
should be mentioned that the catalytic efficiency of DR3 (kcat of
60.6 s−1) and DS6 (kcat of 19.9 s−1) is still high enough for scale-up bio-
catalytic reactions.

Application potential of stereocomplementary DR3 and DS6 in
resolving near-symmetric esters
The potential application of stereocomplementary DR3 and DS6 in the
synthesis of chiral P1 was thoroughly investigated. To qualify as pro-
mising biocatalysts with industrial relevance, substrate loading should
exceed 100 g·L−1, and the e.e. value should surpass 99% within 24 h.
After optimization, a substantial 1.0M rac-S1 (154 g·L−1) could be
enantioselectively hydrolyzed into (S)-S1 by DR3 (Fig. 5A). By the 8.0-h
mark, the e.e.s reached >99% (S) at a conversion ratio of 53% and e.e.p of
88%. (S)-S1was isolated from the reaction systemwith a yield of 45.7%.
Similarly, DS6 was applied in the resolution of 1.0M rac-S1 (154 g·L−1)
for the synthesis of (R)-S1 (Fig. 5B). At 18 h, e.e.s value reached >−99%
(R), with a conversion ratio of 74% and e.e.p of −41%. (R)-S1was isolated
with a yield of 23.3%. Notably, the enantioselective resolution of nearly
symmetric S1 for the synthesis of both enantiomers of chiral S1 was
achieved at 1.0M for the first time, employing stereocomplementary
DR3 and DS6.

Table 1 | Kinetic parameters of WT AcEst1 and mutants toward (R)- and (S)-S1

Mutant KM (mM) kcat (s−1) kcat/KM (s−1∙mM−1) KM (mM) kcat (s−1) kcat/KM (s−1∙mM−1) Ratio of kcat/KM

WT 4.3 ± 0.5 675.3 ± 5.2 156.2 ± 4.2 8.4 ± 0.6 109.3 ± 3.2 13.0 ± 0.3 12.0a/0.08b

DR3 6.2 ± 0.6 60.6 ± 2.5 9.8 ± 1.4 8.4 ± 0.7 0.7 ± 0.1 0.1 ± 0.01 123.3/0.01

V257M 5.8 ± 0.4 324.5 ± 4.4 55.5 ± 2.4 8.9 ± 0.6 8.3 ± 0.6 0.9 ± 0.1 59.0/0.02

Y228M 3.4 ± 0.5 106.4 ± 2.3 31.3 ± 1.8 7.8 ± 0.5 7.4 ± 0.6 0.9 ± 0.1 32.9/0.03

I82M 4.3 ± 0.6 560.5 ± 4.2 131.3 ± 5.1 7.6 ± 0.3 76.7 ± 1.7 10.1 ± 0.3 13.0/0.08

DS6 5.5 ± 0.3 4.1 ± 0.4 0.7 ± 0.1 5.0 ± 0.6 19.9 ± 0.4 4.0 ±0.2 0.2/5.4

L297F 10.1 ± 0.3 77.4 ± 1.9 7.6 ± 0.5 8.0 ± 0.4 107.2 ± 2.0 13.3 ± 0.3 0.6/1.7

L249A 8.4 ± 0.3 8.6 ± 0.8 1.0 ± 0.1 8.1 ± 0.3 8.9 ± 0.8 1.1 ± 0.1 0.9/1.1

T248W 3.6 ± 0.6 134.4 ± 3.3 36.8 ± 2.5 4.8 ± 0.2 92.1 ± 1.6 19.3 ± 0.4 1.9/0.5

T258A 5.3 ± 0.4 838.8 ± 6.5 158.4 ± 3.5 8.4 ± 0.5 229.4 ± 3.2 27.4 ± 0.4 5.8/0.2

V254K 6.6 ± 0.4 1071.6 ± 5.2 163.3 ± 2.2 9.8 ± 0.6 444.2 ± 4.1 45.4 ± 0.5 3.6/0.3

N329F 2.7 ± 0.2 73.4 ± 1.0 27.6 ± 0.8 5.9 ± 0.2 38.4 ± 1.1 6.5 ± 0.3 4.2/0.2

n = 3 independent biological experiments. Data are presented as mean values ± SD. Source data are provided as a Source Data file.
akcat/KM of (R)-S1 / kcat/KM of (S)-S1.
bkcat/KM of (S)-S1 / kcat/KM of (R)-S1.
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The application potential of stereocomplementary DR3 and DS6
was further examined in the enantioselective resolution of esters with
a nearly symmetric structure (Table 2). Initially, methyl and isopropyl
cyclohex-3-ene-1-carboxylate (S2 and S3) could be enantioselectively
hydrolyzed by DR3 and DS6. The E values of DR3 toward S2 and S3
were 92.3 and 110.4, respectively, dramatically higher than 5.6 and 8.3,
consistent with S1. Furthermore, with the increase of alcohol groups
from methyl to ethyl and isopropyl, the E values of DR3 increased
accordingly, implying that a larger volume of alcohol groups is favor-
able for high enantioselectivity. DS6 exhibited reversed (S)-selectivity
toward S2 and S3with E values of −7.0 and −12.3, respectively. DR3 and
DS6 demonstrated opposite priorities in the enantioselective accom-
modation of P1 esters.

Moreover, other esters with a nearly symmetric structure, speci-
fically oxyheterocyclic esters, were also evaluated by DR3 and DS6
(Table 2). WT AcEst1 displayed a relatively higher activity toward S4
and S6 with odd-member rings than S5 and S7 with even-member
rings. The highest E value was 12.1 toward S7. DR3 could enantiose-
lectivelyhydrolyze (R)-esterswith higher E values thanWT. Thehighest
E value of DR3 was also observed with S7. Conversely, DS6 could
enantioselective hydrolyze (S)-esters with reversed E values. The low-
est E value was observed with S5 by DS6. All of the above results

demonstrate that stereocomplementary DR3 and DS6 can be applied
in the enantioselective hydrolysis of other esters containing a nearly
symmetric structure.

Molecular mechanism of stereoselectivity control according to
MD and QM/MM calculation
In-depth insights into themolecularmechanism of carboxylesterase in
the enantioselectivity resolution of nearly symmetric esters were
sought by attempting to resolve the crystal structure of stereo-
complementary DR3 and DS6. Despite optimization of crystallization
conditions and different truncation attempts, crystals with the desired
quality for X-ray crystallography were not obtained. Consequently,
structuralmodels of DR3 andDS6were constructed using AlphaFold2,
a widely accepted software for building reliable protein structures
based on artificial intelligence. The structural models of WT, DR3, and
DS6wereminimized and subjected tomultiple 100-nsMD simulations.
The RMSD achieved stability at about 5 ns, ranging from 1.5 to 2.5 Å.

Near-attack conformation (NAC) analyses were conducted to gain
insights into the transition state of nucleophilic attack50. According to
the transition state, the angle among O of S201, carbonyl C, and car-
bonyl O of the substrate (θ1: ∠OG-C7-O2) should be within 90° ± 15°,
and the nucleophilic attack distancebetweenOof S201 and carbonyl C
of the substrate (d1: distOG-C7) should be less than 3.4 Å. As illustrated
in Fig. 6, the percentages of conformations satisfying NAC parameters
of WT toward (R)- and (S)-S1 were 38.7% and 14.9%, respectively
(Fig. 6A, B), consistent with the (R)-preference of WT AcEst1. However,
the NAC percentage of 14.9% in WT and (S)-S1 hinted that (S)-S1 could
also be accommodated by WT.

For DR3, the NAC percentage of (R)-S1 was 39.9%, significantly
higher than the 5.6% of (S)-S1 (Fig. 6C, D), indicating that hydrolysis of
(R)-S1 is more favorable than (S)-S1 in DR3. Regarding DS6, the NAC
percentage of (S)-S1 was 29.4%, much higher than the 12.9% of (R)-S1,
proving that (S)-S1 is preferable to (R)-S1 in DS6 (Fig. 6E, F). Binding
free energy was also analyzed employing the MMPB/GBSA method51.
The free energy difference between (R)- and (S)-S1 of DR3 was
−3.7 kcal·mol−1, higher than the −3.0 kcal·mol−1 of WT. For DS6, the free
energy difference between (R)-S1 and (S)-S1 was 3.3 kcal·mol−1, sug-
gesting that (S)-S1 was preferable.

Representative conformations with the highest distribution ratio
were extracted fromMD simulations and are presented in Fig. 7. In the
case of WT AcEst1, the distance between the O atom of catalytic S201
and the carbonyl C (d1) of (R)-S1measured 3.1 Å, while d1 of (S)-S1 was
3.9 Å (Fig. 7A, B). Turning to DR3, the d1 of (R)-S1 decreased to 2.5 Å,
and thed1 of (S)-S1 increased to 4.0Å (Fig. 7C, D). Themutationof V257
into M257 introduced an alkyl-π interaction with the double bond of
(R)-S1. ForDS6, the d1 of (S)-S1decreased to 2.6 Å, while the d1 of (R)-S1
remained the same as in WT (Fig. 7E, F). A favorable π-π interaction
between F297 and (S)-S1was also observed, providing evidence for the
increased catalytic efficiency of DS6 toward (S)-S1.

Five trajectories were randomly selected fromMD simulations for
calculating the free energy barriers (ΔG‡) for (R)- and (S)-S1ofWT, DR3,
and DS6 using QM/MM52. The energy barriers (ΔG‡) of the rate-
determining step for WT&(R)-S1, WT&(S)-S1, DR3&(R)-S1, DR3&(S)-S1,
DS6&(R)-S1, DS6&(S)-S1 were 13.5, 14.6, 13.7, 16.3, 16.5 and
15.4 kcal·mol−1, respectively (Fig. 8). The free energy difference
between (R)- and (S)-S1 (ΔΔG‡) of WT was calculated to be
−1.1 kcal·mol−1, favoring the hydrolysis of (R)-S1. In contrast, the ΔΔG‡

values of DR3 and DS6 were −2.6 and 1.1 kcal·mol−1, respectively. The
significant decrease in ΔΔG‡ of DR3 and the increase for DS6 were
consistent with their performance in the enantioselectivity resolution
of S1. These findings provide molecular insights into the manipulation
of enantioselectivity of stereocomplementary DR3 and DS6 in the
accommodation and resolution of S1 with a nearly symmetric
structure.
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Fig. 5 | Enantioselective resolution of near-symmetric S1 by DR3 and DS6 for
the synthesis of chiral (S)- and (R)-S1. A Time course of DR3 catalyzed enantio-
selective resolution of rac-S1 for the synthesis of (S)-S1. B Time course of DS6
catalyzed enantioselective resolution of rac-S1 for the synthesis of (R)-S1. Black dot:
e.e.s, green dot: e.e.p, orange dot: conversion ratio.
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Discussion
Carboxylesterases represent highly promising biocatalysts for syn-
thesizing optically active carboxylic acids and esters53. Their appeal lies
in their independence from cofactors, high catalytic efficiency, and

ease of operation. Recent surveys indicate that approximately 25% of
commercialized pharmaceuticals and 40% of crop protection com-
pounds contain at least one carboxylic group54,55. This characteristic
not only enhances solubility but also improves pharmaceutical

Table 2 | Substrate specificity of WT AcEst1 and its mutants toward other near-symmetric esters

Substrate WT DR3 DS6

Spec. act.a /U·mg−1 E value Spec. act. /U·mg−1 E value Spec. act. /U·mg−1 E valueb

S1 119.2 ± 3.1 7.3 ± 0.1 24.8 ± 0.5 103.2 ± 2.2 2.6 ± 0.2 −11.2 ± 0.5

S2 162.3 ± 4.3 5.6 ± 0.2 29.0 ± 0.7 92.3 ± 2.1 5.2 ± 0.2 −7.0 ± 0.3

S3 91.5 ± 2.2 8.3 ± 0.2 8.1 ± 0.3 110.4 ± 2.3 2.5 ± 0.2 −12.3 ± 0.7

S4 50.5 ± 1.6 3.5 ± 0.1 43.4 ± 1.1 16.3 ± 1.2 8.9 ± 0.4 −1.3 ± 0.1

S5 8.5 ± 0.4 6.3 ± 0.2 6.2 ± 0.2 18.2 ± 1.3 2.5 ± 0.2 −2.7 ± 0.1

S6 46.0 ± 1.5 7.7 ± 0.2 31.4 ± 0.8 22.1 ± 1.3 4.6 ± 0.4 −2.0 ± 0.1

S7 8.0 ±0.5 12.1 ± 0.2 16.6 ± 0.5 26.4 ± 1.2 2.3 ± 0.2 −1.0 ± 0.1

n = 3 independent biological experiments. Data are presented as mean values ± SD. Source data are provided as a Source Data file.
aSpec. act. denotes specific activity.
bE value refers to enantioselectivity value, and negative E value denotes (S)-preference.

Fig. 6 | Near-attack conformation (NAC) analysis of WT AcEst1 and its mutants
from multiple MD simulations. A WT & (R)-S1. B WT & (S)-S1. C DR3 & (R)-S1.
D DR3 & (S)-S1. E DS6 & (R)-S1. F DS6 & (S)-S1. NAC percentage (%) refers to the

percentage of conformations satisfying nucleophilic attack criteria with θ1 of 90° ±
15° and d1 of less than 3.4 Å. n = 5 independent simulations.
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Fig. 7 | Interaction analysis ofWTAcEst1 and itsmutants toward (R)- and (S)-S1. AWT& (R)-S1.BWT& (S)-S1.CDR3& (R)-S1.DDR3& (S)-S1. EDS6& (R)-S1. FDS6& (S)-
S1. Yellow stick: catalytic triad, cyan stick: different residues, purple ball and stick: (R)- and (S)-S1. n = 5 independent simulations.

Fig. 8 | Scheme of the substrate binding pockets of WT, DR3 and DS6 with complementary enantioselectivity and free energy barriers analysis using QM/MM
calculations. ΔΔG‡ =ΔG‡

(R)-S1 − ΔG‡
(S)-S1. pink dot: ΔG‡ value toward (R)-S1, blue dot: ΔG‡ value toward (S)-S1. n = 5 independent simulations.
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efficacy, allowing easy derivatization into versatile functional groups
like amines or hydroxyl groups56. While biocatalysts are generally
known for their high enantioselectivity, they often fall short of
demonstrating the desired enantioselectivity, particularly for indust-
rially relevant chiral compounds. This challenge becomes more pro-
nounced when dealing with substrates possessing nearly symmetric
structures, considered “hard-to-discriminate.” Chiral cyclohex-3-ene-1-
carboxylic acids (CHCAs, P1s), characterized by a nearly symmetric
hexatomic ring, are essential building blocks. Examples include (S)-P1
for Edoxaban15 and (R)-P1 for Oseltamivir20. However, commercial and
naturally evolved enzymes typically exhibit low enantioselectivity
toward P1 esters28. As a result, manipulating carboxylesterase enan-
tioselectivity for the stereocomplementary synthesis of chiral P1s has
become an area of particular interest. The enzyme enantioselectivity
can be engineered through either quantity-intensive directed evolu-
tion or quality-intensive (semi-)rational design. To enhance screening
throughput, substrate analogs such as p-nitrophenol ester, featuring
an absorption peak at 405 nm, or 2,3-dibromopropanol ester (toxic to
bacterial growth), which replaces glycerol (beneficial to bacterial
growth), are commonly employed57. However, these substrate analogs
often differ, either wholly or partially, from the “real substrate.” Con-
sequently, screening outcomes may deviate from the intended
objectives. Machine learning (ML) has emerged as a powerful data-
driven strategy for expediting directed evolution. The accuracy of a
trained ML predictor relies heavily on a high-quality dataset and sui-
table features. Obtaining accurate enantioselectivity data for carbox-
ylesterases at a high volume can be challenging. A high-throughput
method involving an alcohol dehydrogenase coupling was developed
to generate a high-quality dataset using the ratio of initial activity
between (R)-S1 and (S)-S1. Additionally, using atom numbers or a
binary model of 0 and 1 as features to describe the volume and
hydrophobicity of residues and substrates may yield implausible
results. Considering parameters from biochemical perspectives, such
as spatial volume for residue or substrate size, hydrophobic index for
hydrophobicity, Kyte-Doolittle hydropathy scale for hydrophilicity,
and isoelectric point for electrostatic properties, is of interest. To
address these challenges, we envisioned to introduce biochemical
features from experimentalists’ considerations in training ML pre-
dictors to expedite the stereodivergent evolution of carboxylesterase
toward nearly symmetric esters. Seven features—spatial volume,
hydrophobic, hydrophilicity, electrostatic, hydrogen bonding, π-π
interaction, and distance to catalytic residue—were introduced as
descriptors for training ML algorithms. Six ML models were trained,
and a GBRT model was derived, exhibiting a high R2 of 0.93 and a low
MSE of 0.12. With the introduction of a dataset containing double
mutants, the correlation was further enhanced to 0.97. Contributions
of these seven features were also investigated as shown in Supple-
mentary Figs. S34 and S35, proving the synergistic effect of all these
features. The GBRT model demonstrated effectiveness in predicting
the enantioselectivity of carboxylesterase AcEst1 toward S1. Moreover,
the potential application of theGBRTmodel using the aforementioned
features was evaluated in learning the enantioselectivity of alcohol
dehydrogenase from Kluyveromyces polysporus58 and carbonyl reduc-
tase from Candida glabrata59. As shown in Supplementary Fig. S40, a
high coefficient of determination (R2 values) of 0.92 and 0.89 were
obtained. All these prove the application potential of the GBRTmodel
with the aforementioned features. Compared with traditional directed
evolution strategies such as iterative saturationmutagenesis and tripe
code saturation mutagenesis, this ML predictor is advantageous in
saving time and labor force, such as about 95% and 99.3% screening
work could be saved for mutagenesis at six positions (Supplementary
Fig. S41).

The application of GBRT accelerated the stereodivergent evolu-
tion of AcEst1, creating stereocomplementary mutants DR3 and DS6.
Kinetic parameter analysis revealed that DR3 displayed a significantly

increased kcat/KM ratio of (R)-S1 to (S)-S1, while DS6 exhibited an
increased kcat/KM ratio of (S)-S1 to (R)-S1. DR3 and DS6 were success-
fully employed in the enantioselective resolution of other nearly
symmetric esters. Molecular dynamic simulations and QM/MM calcu-
lations provided kinetic and thermodynamic evidence for manipulat-
ing the enantioselectivity of AcEst1 toward S1 with a nearly symmetric
structure. This study presents an effectiveML predictor for expediting
the directed evolution of carboxylesterase enantioselectivity. It intro-
duces two stereocomplementary carboxylesterase mutants for the
preparation of enantiomerically enriched 3-cyclohexene-1-carboxylic
acids for the synthesis Edoxaban and Oseltamivir, and many other
significant compounds. Further evolving (S)-selectivity and breaking
the trade-off between activity and enantioselectivity are in progress by
developing dual-target ML method on 320 residues outside substrate
binding pocket.

Methods
Screening and protein engineering of alcohol dehydrogenases
Alcohol dehydrogenases (ADHs) stored in our lab were submitted for
determination of the oxidative activity toward ethanol. A 200μL
reaction system containing 0.5mM NAD+ or NADP+ (Bontac Bio-
Engineering (Shenzhen) co., Ltd), 800mMor 2mMethanol, 10μLADH
solutions and 170μL Tris-HCl (pH 8.0, 100mM) was performed at
30 °C. Absorbance changes at 340 nm referring to the changes of
NAD(P)H were monitored. One unit (U) of activity was defined as the
amount of ADH required for the production of 1 μmol NAD(P)H per
minute. All assays were performed in triplicate.

Substrate ethanol was docked into the crystal structure of
ADH10 in complex with NADP+ (PDB ID. 5Z2X). Residues at the
methyl terminal of ethanol, including V84, F86M Y127, A128, F161,
P195, S196, F197, V198, and T215, were selected for mutagenesis
employing High-fidelity KOD Plus Neo polymerase (TOYOBO CO.,
LTD.) with primers listed in Supplementary Table S160. General pro-
tocol for whole-plasmid PCR contained steps of pre-denaturation at
96 °C for 5min, twenty-cycles of amplification including denatura-
tion at 98 °C for 15 s, annealing at 55 °C for 15 s and elongation at
68 °C for 3min, and further elongation at 68 °C for 10min. The
resultant PCR products were digested with DpnI to remove the
template plasmids and were chemically transformed into E. coli
BL21(DE3). ADH10mutants were induced by 0.2mM IPTG at 25 °C for
12 h and lysed by ultrasonication at 300W for 15min in an ice-water
bath. The cell debris was removed by centrifugation to obtain the
crude enzyme extract. Then, the specific activity toward 2mM
ethanol of ADH10 mutants was determined, as mentioned above.
Mutations of V84L and F197V were combined to obtain ADH10V84L/

F197V. WT and double mutant with His6-tag were purified employing
nickel-affinity chromatography. The kinetic parameters of purified
enzymes were determined by varying the concentrations of ethanol
(1–800mM). The KM, Vmax, kcat values were calculated by non-linear
fitting to the Michaelis-Menten equation. All determinations were
conducted in triplicate. Supernatant of ADH10V84L/F197V was obtained
by centrifuge and lyophilized under vacuum to obtain crude enzyme
power, which was stored at 4 °C for further use.

Establishment of a high-throughput method for determination
of Eapp
A high-throughput method was established for the determination of
apparent enantioselectivity (Eapp) of AcEst1 by coupling
ADH10V84L/F197V based on released ethanol from (R)- and (S)-S1. A
200μL reaction system consisting of (R)- or (S)-S1, NADP+, ADH10V84L/

F197V and AcEst1 was conducted at 30 °C to spectrophotometrically
monitor the increase of NADPH at 340nm. First, background inter-
ference was excluded using the ADH-free, AcEst1-free, and S1-free
systems. Then, different dosages ofADH10 V84L/F197V, including 5.0, 7.5,
15, and 30 U·mL−1, NADP+ concentrations of 2.0, 3.0, 4.0, and 5.0mM,
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S1 concentrations of 0.75, 1.0, 2.0, and 5.0mM, were systematically
optimized. The final reaction system included 10μL ADH10V84L/F197V

(7.5 U·mL−1), 10μL NADP+ (4mM), 10μL (R)- or (S)-S1 (5.0mM), 10μL
AcEst1 solution in 160μL Tris-HCl (pH 8.0, 100mM). Eapp value was
spectrophotometrically obtained by calculating the ratio of (R)-S1 to
(S)-S1 or (S)-S1 to (R)-S1 (1). A total of 96 replicates of WT AcEst1 was
cultivated for determining their Eapp and calculating the average Eapp
value and standard deviation of this method.

Eapp =
Rð Þ � S1
Sð Þ � S1

ð1Þ

Site-directed saturation mutagenesis and combinatorial muta-
genesis of AcEst1
Site-directed saturation mutagenesis of AcEst1 was conducted with
plasmid pET28-AcEst1 as template. Degenerative codons of 22c-trick,
including NDT, VHG and TGG, were employed to introduce saturation
mutagenesis (Supplementary Table S2). Primers were mixed at a ratio
of 12:9:1 to encode all the twenty amino acidswith only two redundant.
Whole-plasmid PCR was performed using KOD polymerase, and the
resultant product was digested by DpnI as mentioned above and
transformed into E. coli BL21(DE3). After evaluation by colony PCR and
sequencing, positive colonies were inoculated into a 96-well plate
supplemented with LB medium and kanamycin. Then, the plate was
cultivated at 37 °C and sub-transferred to another 96-well plate for
induction expression at 25 °C for 12 h. The cells were harvested by
centrifugation and lysed by lysozyme at 37 °C for 2 h. After cen-
trifugation at 8000×g and 4 °C for 20min, the supernatants were
subjected to Eapp analysis using the above-described high-throughput
method. All measurements were performed in triplicate. The mutants
with distinctly different Eapp (higher or lower) compared to WT were
recultivated for further evaluation. A high-quality dataset was estab-
lished for subsequent machine learning.

Beneficial single mutants were randomly combined to construct
double mutants employing the primers listed in Supplementary
Table S3. PCR reaction and transformation were conducted as men-
tioned above. Double mutants were verified by sequencing, and posi-
tive clones were inoculated in LB medium and cultivated overnight.
After inductive expression by IPTG, doublemutantswereobtained and
subjected for determination of Eapp. Triple, quadruple, quintuable and
sextuple mutants guided by machine learning were also constructed
using primers listed in SupplementaryTableS3. After verification, their
Eapp and enantioselectivity value (E value) were determined.

Machine learning
The high-quality dataset of Eapp was built based on features including
volume, hydrophobicity, hydropathy scale, isoelectric point, hydrogen
bond, π-interaction, and distance to nucleophilic S201 listed in Sup-
plementary Table S4. Features of single mutants were obtained by
subtraction with those of WT (Supplementary Fig. S25), features of
combinatorial mutants were obtained by addition of single mutants.
Machine learning was performed on Jupyter Notebook installed with
the Scikit-Learn package. Six regression algorithms, including GBRT,
KRR, GPR, RF, SVR, and BRR, were trained using the high-quality
dataset. These hyperparameters were tuned with a ten-fold cross-
validated grid-search on the training set (Supplementary Table S5).
Subsequently, thesemodels were retrained on the training set with the
above-optimized hyperparameters and evaluated on the test set. The
quality of ML predictors was evaluated by the coefficient of determi-
nation (R-square, R2) and mean squared error (MSE) (2–4). Based
on the initial dataset with 760 mutants, the GBRT was proved to be
the best algorithm to build the ML model, using hyperparameters
of n_estimators=250, learning_rate=0.04, max_depth=10,

min_samples_split=2, min_samples_leaf=4.

R2 y,by� �
= 1�

Pn
i = 1ðyi � byiÞ2Pn
i = 1ðyi � �yÞ2

�y=
1
n

Xn
i = 1

yi ð3Þ

MSE y,by� �
=

i
n

Xn
i = 1

ðyi � byiÞ2 ð4Þ

Where yi and are byi the true and predicted values of the i-th mutant,
respectively.

Eapp data of (R)- and (S)-selective double mutants was added into
the dataset, which was subsequently retrained by the GBRT predictor.
The refined GBRT predictor was evaluated by R2 and MSE. Further-
more, combinatorialmutants were virtually constructed, and their Eapp
values were predicted by GBRT algorithm. Mutants with the highest
Eapp values at each round of combination were further experimentally
verified using the above-mentioned method. The activity and enan-
tioselectivity of combinatorial mutants were measured to achieve the
stereodivergent evolution of (R)- and (S)-selective mutants.

Characterization of AcEst1 mutants
General protocol for determination of the activity and enantioselec-
tivity ofAcEst1 andmutantswasperformed ina 10-mLreactionmixture
containing 50mM rac-S1 and appropriate amount of enzyme solution
in PBS buffer (pH 8.0, 100mM) at 30 °C and 180 rpm. At different time
intervals, samples were withdrawn from the reaction mixture, and the
reaction was terminated by the addition of 1.0M HCl, followed by
extractionwith equal volumeof ethyl acetate supplementedwith 1mM
dodecane as the internal standard. The upper organic phase was iso-
lated and dried over anhydrousNa2SO4, analyzed by chiral GC orHPLC
(Supplementary Table S6). The activity (U) was defined as the amount
of enzyme required for the decrease of 1 μmol S1 at the above condi-
tions. The enantiomeric excess (e.e.) and enantioselectivity value (E
value) were calculated according to Eqs. 5–7.

ees =
ðSÞ � S1½ � � ½ðRÞ � S1�
ðSÞ � S1½ �+ ½ðRÞ � S1� × 100% ð5Þ

eep =
ðRÞ � P1½ � � ½ðSÞ � P1�
ðRÞ � P1½ �+ ½ðSÞ � P1� × 100% ð6Þ

E value =
Ln 1� conversion ratioð Þ× 1� ees

� �� �
Ln 1� conversion ratioð Þ× 1 + ees

� �� � ð7Þ

Kinetic parameters of AcEst1 and mutants were determined using
standard protocol except for different substrate concentrations ran-
ging from 1mM to 20mM. The initial activities were obtained. Sub-
sequently, the KM, Vmax and kcat values were calculated by non-linear
fitting to theMichaelis-Menten equationemployingOrigin package. All
assays were performed at least three times.

Application potential of AcEst1, DR3, and DS6 in the resolution of
other nearly symmetric esters was performed employing the standard
activity assay conditions. Different substrates were added in the
reaction system and the specific activity was calculated according to
the initial reaction rates. E values toward different substrates were
determined at conversion ratios of 50% based on Eq. 7. All determi-
nations were conducted in triplicate.
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Enantioselective resolution of rac-S1 by DR3 and DS6 at
gram scale
Recombinant E. coli whole cells expressing (R)-selective DR3 and (S)-
selective DS6 were prepared as mentioned above. The cells were lyo-
philized under vacuum to form the dry cells, whichwere stored at 4 °C
for further use. To achieve stereoselective synthesis of chiral P1 at
gram scale, 100mmol (1.0M) rac-S1, appropriate of dry cells of DR3
andDS6were dissolved in 100mLPBS buffer (pH 8.0, 100mM) in a tri-
neck flask. Preparative reaction was magnetically stirred at 180 rpm
and 30 °C. Then, 1.0M Na2CO3 was spontaneously titrated tomaintain
the pH of the reaction mixture at 8.0. The reaction was terminated
until the ees achieving >99% by adjusting the pH to basic condition and
adding equal volume of ethyl acetate three times. All the organic
phases were combined and dried over anhydrous Na2SO4 overnight.
Products were obtained by evaporation under vacuum and verified by
1H-NMR and 13C-NMR.

MD simulations and QM/MM calculation
Structure models of WT AcEst1, DR3 and DS6 were built employing
AlphaFold2 and verified by SAVES61. (R)- and (S)-S1 were docked into
the active center ofAcEst1, DR3 andDS6usingAutoDockVina. Docking
poses with relative higher scores were regarded as the initial structure
frommolecular dynamic (MD) simulations. Subsequently, AcEst1, DR3
and DS6 were protonated using H++. All the MD simulations were
performed using the Amber20 packages with GPU acceleration on the
hypercomputer at the School of Biotechnology. The force fields for
protein, S1 and water molecules were ff14SB, gaff and TIP3P, respec-
tively. Sodium and chloride were added to neutralize simulation sys-
tem, and aTIP3Pwater boxwith a clearancedistanceof 15 Å around the
protein was added. There were 27,208 atoms in the final simulation
systems First, 10,000-step of energy minimization with the steepest
descent method was employed, followed by 1 ns heating at NVP from
0K to 300K, and 2 ns equilibrating at NPT and 300K. Production was
performed in NPT ensembles for 100 ns with dt of 0.002 ps. All MD
simulations were conducted in five replicates. Binding free energy was
analyzed using MMPB/GBSA, distance and angle were statistically
analyzed employing Chimera 1.6, interactions between enzymes and
substrates were analyzed with Discover studio 4.5 and visualized
with Pymol.

Quantummechanics/molecularmechanics (QM/MM) calculations
were performed employing Turbomole 7.2162 and DL-POLY2 modules
within the Chemshell 3.7.1 software package352. The QM region
includes the catalytic triad Asp200-Ser201-Hid325 and the substrate
molecule, totaling 71 atoms. The atoms in the QM region are treated
with DFTmethods, while the atoms in the MM region are subjected to
energy calculations using the CHARMM36 force field63. For the polar-
ization effects in the QM region, the static electric field embedding
method is employed, and the QM/MM boundary is treated using the
hydrogen-linking method of the charge transfer model. Considering
themedium- and long-range dispersion interactions of the system, the
dispersion correction method Gimme-D3 is applied in all QM/MM
calculations. The structural optimizations are completed usingB3-LYP-
D3/def-SVP/CHARMM3664, and single-point energy calculations are
performed using M06-2X-D3/def2-TZVP65. The energy barrier of the
reaction was calculated using the Boltzmann-weighted average
method, with the formula as follows:

ΔGz = � RT ln
1
N

XN
j = 1

exp �ΔGj

RT

� � !
ð8Þ

Where ΔGz represents the average barrier, R is the gas constant, T is
the temperature at which the reaction occurs, N is the number of the
selected conformations, and ΔGj represents the barrier of
conformation j.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in thepaper are available in
themain text or the supplementary information. There is no restriction
on data availability. Source data are provided with this paper.

Code availability
All codes are provided separately with this paper and deposited in
GitHub (https://github.com/guochaoxu2019/NCOMMS-24-05359.git).
There is no restriction on code availability.
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