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Abstract Arginine deiminase (ADI) is an important arginine-
degrading enzyme with wide applications, in particular as an
anti-cancer agent for the therapy of arginine-auxotrophic tu-
mors. In recent years, novel ADIs with excellent properties
have been identified from various organisms, and crystal
structures of ADI were investigated. To satisfy the require-
ments of potential therapeutic applications, protein engineer-
ing has been performed to improve the activity and properties
of ADIs. In this mini-review, we systematically summarized
the latest progress on identification and crystal structure of
ADIs, and protein engineering strategies for improved enzy-
matic properties, such as pH optimum,Km and kcat values, and
thermostability. We also outlined the PEGylation of ADI for
improved circulating half-life and immunogenicity, as well as
their performance in clinical trials. Finally, perspectives on
extracellular secretion and property improvement of ADIwere
discussed.
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Introduction

Arginine deiminase (ADI; EC 3.5.3.6), an arginine-degrading
enzyme, catalyzes the hydrolyzation of arginine to citrulline

and ammonium by deamination of guanidino group (Shirai
et al. 2001). Generally, the arginine hydrolysis by ADI is
considered to be the first step of the ADI system, which com-
prises two additional reactions: converting citrulline into orni-
thine and carbamoyl phosphate catalyzed by ornithine
transcarbamylase (OTC) and degrading carbamoyl phosphate
to ammonia and CO2 by carbamate kinase (CK) (Zúñiga et al.
2002) (see in Fig. 1). The ADI system provides a major energy
source for many microorganisms since it generates ATP by
consuming equimolar arginine (Zúñiga et al. 2002).

Arginine, one of nonessential amino acid in humans, is
synthesized from citrulline by the catalysis of arginino-
succinate synthetase 1 (ASS1) and argininosuccinate lyase
(ASL) (Caldara et al. 2008). ASS1 is usually regarded as a
house-keeping gene in normal cells and a rate-limiting en-
zyme for the biosynthesis of arginine in hepatocytes and en-
dothelial cells. However, many tumors, such as hepatocellular
carcinomas (HCCs) and melanomas, lack ASS1 expression
and thereby are auxotrophic for arginine (Dillon et al. 2004;
Szlosarek et al. 2007). Therefore, the ASS1-deficient tumors
strictly depend on exogenous arginine, and ASS1 deficiency
is considered to be both a prognostic biomarker and predictor
of sensitivity to arginine deprivation therapy (Delage et al.
2010). ASL, immediately downstream of ASS1, catalyzes
the conversion of argininosuccinate into arginine and fuma-
rate. The methylation of ASL often leads to the arginine aux-
otrophy in glioblastoma multiforme (Syed et al. 2013).
Numerous studies have confirmed that arginine depletion by
ADI is effective in many ASS1-deficient tumors (Hernandez
et al. 2010; Kelly et al. 2012). Therefore, ADI is generally
regarded as one potential cancer therapy agent for the
treatment of arginine-auxotrophic tumors, and has attracted
increasing interests in the past few decades.

In our previous review (Ni et al. 2008), we have focused on
the anti-tumor activity, cloning and expression, structure
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analysis and clinical applications of ADI, as well as the im-
portance of heterogeneous expression and protein engineering
on ADI to overcome insufficient properties. In this mini-re-
view, we summarized the latest progress on ADIs from novel
sources, their crystal structures, protein engineering ap-
proaches, and PEGylated modifications for improved proper-
ties in pharmaceutical applications. The prospects for ADI-
related investigations were also discussed.

Recent discoveries of ADI

Since ADI was first discovered from Bacillus pyocyaneus by
Horn (1933), more andmore ADI source organisms have been
reported, such as Pseudomonas putida, Halobacterium
salinarium, Mycoplasma arginini, Mycoplasma hominis,
Pseudomonas aeruginosa, Lactococcus lactis ssp. Lactis,
and Pseudomonas plecoglossicida. The characterizations of
these ADIs have also been discussed (Ni et al. 2008). In recent
years, various organisms capable of producing ADIs have

been isolated, which possess excellent properties such as high
inhibiton rate, good pH tolerance, and thermostability for clin-
ic therapy application. For instance, an ADI producing strain,
P. plecoglossicida CGMCC2039, has been isolated from
Wuxi canal. ADI from P. plecoglossicida (PpADI) showed
excellent inhibitory effect to human HCC cell line HEPG2,
and the inhibiton rate was as high as 93.4 % with 0.5 U/ml of
ADI (Liu et al. 2008). Amer and the coworkers isolated three
novel lactobacilli probiotic strains from human infant feces,
which were identified as Lactobacillus gasseri NM112 har-
boring the ansA gene (encoding L-asparagiase), Lactobacillus
fermentum NM112, and Lactobacillus casei NM312 harbor-
ing the acrA gene (encoding ADI), respectively. These stains
were sugested to be probiotics with potential therapeutic effect
against cancer due to their good tolerance to low pH (pH 1.5),
0.3 % bile salts, and moderate tolerance to pancreatic enzymes
as well as antagonistic action (Amer et al. 2013). ADI from
group A Streptococcus (GAS, Streptococcus pyogenes) was
regarded as a GAS vaccine candidate due to its location on the
cell surface and production of opsonic antibodies capable of
protecting mice against lethal challenges from GAS strains
(Henningham et al. 2012). A novel thermostable ADI with
relatively lower antigenicity has been purified from thermo-
philic Aspergillus fumigatus KJ434941, exhibiting great po-
tential in clinical trials (El-Sayed et al. 2015).

Furthermore, some pathogenic organisms harboring ADI
system have been discovered recently to elucidate infection
pathogenesis. For instance, Ryan and coworkers revealed the
pathogenesis of Listeria monocytogenes infection in the mu-
rine model, in which ADI system plays an important role in
acid tolerance and conduce to the survival and growth of
L. monocytogenes under acidic conditions (Ryan et al.
2009). Hitzmann and coworkers identified a surface-exposed
localization of the ADI system enzymes from Streptococcus
canis by genetic composition and in silico analysis, and elu-
cidated the contribution of ADI system to the development of
S. canis infection pathogenesis (Hitzmann et al. 2013).
Similarly, Caparon’s group recently demonstrated that the
ADI pathway in S. pyogenes contributes to pathogenesis in
murine models by modulation of innate immunity through
depletion of arginine (Cusumano et al. 2014). Furthermore,
they confirmed that arginine and citrulline catabolism have
distinct contributions to virulence during an infection.
Especially, a concerted action between citrulline catabolism
and F1FO-ATPase could help to protect bacteria against the
low-pH environment, which contributes to the pathogenesis
of bacterial infection (Cusumano and Caparon 2015).

Crystal structure of ADI

To reveal the catalytic mechanism of ADI and provide
molecular basis for protein engineering, crystal structures

Fig. 1 Scheme of ADI pathway
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of ADI from different sources are investigated and ana-
lyzed. The first crystallization of ADI was performed using
multiple-step chromatography method (Kakimoto et al.
1971), and the crystallization procedure was then opti-
mized (Shibatani et al. 1975). So far, nine crystal structures
of ADI have been reported. As shown in Table 1, five
crystal structures (te trameric subunits) are from
P. aeruginosa, two (homodimeric subunits) are from
M. arginini , one (homodimeric subunits) is from
Mycoplasma penetrans, and one (homodimeric subunits)
is from GAS. Galkin et al. (2004) determined the crystal
structure of ADI of P. aeruginosa with a 2.45-Å resolution
(PDB ID: 1RXX) by multi-wavelength anomalous diffrac-
tion. The crystal structure reveals the main domain models
o f ADI and i t s p robab le ca t a ly t i c mechan i sm.
Subsequently, the catalytic mechanism was further con-
firmed by the crystal structure of four mutant ADIs
C406A, H278A, D280A, and D166A (Galkin et al.
2005). Das and coworkers also determined the crystal
structure of ADI from M. arginini in two different forms
(1.6 and 2.0 Å, PDB ID: 1S9R and 1LXY) by multiple
isomorphous replacement methods (Das et al. 2004).
Commonly, ADI is formed by two or four subunits,
which constitute a homodimeric or tetrameric structure
(Ni et al. 2008). The single subunit is highly similar
among ADIs from different microorganisms. As shown
in Fig. 2, using ADI from P. aeruginosa (PDB: 2A9G)
as an example, one core domain comprises five ββαβ
modules with an additional α-helical inserted between
the first and second ββαβ modules. A typical catalytic
triad (Cys-His-Glu/Asp), around the substrate (such as
L-arginine), is conserved in all ADIs as well as other
arg in ine-degrading enzymes , such as Nω , Nω -
dimethylarginine hydrolase (DDAH) (Murray-Rust
et al. 2001)and human peptidylarginine deiminase
(PAD4) (Arita et al. 2004).

ADI pathway has been proved to contribute to pathogene-
sis of S. pyogenes due to its protection against acidic stress
during infection (Cusumano and Caparon 2015). Therefore,
understanding the metabolic mechanism of ADI system is
extremely important for preventing bacterial infection.
Furthermore, ADI system in M. penetrans is considered to
be a major energy source in anaerobic conditions. Recently,
the crystal structure of three ADI system enzymes from
M. penetrans, ADI, OTC, and CK, were presented to explain
the metabolic mechanism of the ADI pathway (Gallego et al.
2012). The crystal structure (2.3 Å) of ADI from M. arginini
was resolved in its apo-form, which showed an Bopen^ con-
formation of the active site in comparison with previous
Bclosed^ conformation in a covalent complex with two L-
arginine substrate intermediates (Das et al. 2004; PDB:
1LXY and 1S9R). The occurrence of Bopen^ and Bclosed^
conformations allows the entrance of substrate and release of
product, which accords with the induced-fit mechanism.
Additionally, similar substrate induced-fit mechanism was al-
so recognized in P. aeruginosa ADI (Galkin et al. 2004;
Galkin et al. 2005). Understanding ADIs’ crystal structures
and their catalytic mechanism will be useful for protein
engineering of ADI (such as catalytic kinetics, activity
and stability under physiological conditions) for further
clinical applications. Administration of a GAS vaccine
preparation involves the wild-type ADI from GAS.
However, its inherent enzymatic activity may present a
safety risk. To improve the vaccine safety, the crystal
structure of GAS ADI (2.48 Å) and the structure immu-
nogenic epitope mapping was used in vaccine design.
Based on its crystal structure, several amino acid resi-
dues (such as D166, E220, H277, and C401) were se-
lected for alanine scanning mutagenesis. These mutants
abolished ADI activity while retained their three-
dimensional structure for recognition by antisera and
immunogenic epitopes. Two inactivated D166A and

Table 1 Crystal structures of ADIs from different sources

Organism source PDB ID Subunits Resolution (Å) Properties Citation

P. aeruginosa 1RXX Tetrameric 2.45 ADI Galkin et al. 2004

2A9G Tetrameric 2.30 ADI mutant C406A in complex with L-arginine Galkin et al. 2005

2AAF Tetrameric 2.30 ADI mutant H278A in complex with L-arginine Galkin et al. 2005

2ABR Tetrameric 2.90 ADI mutant D280A in complex with L-arginine Galkin et al. 2005

2ACI Tetrameric 2.50 ADI mutant D166A Galkin et al. 2005

M. arginini 1LXY Homodimeric 2.00 ADI in complex with L-citrulline Das et al. 2004

1S9R Homodimeric 1.60 ADI in complex with a reaction intermediate Das et al. 2004

M. penetrans 4E4J Homodimeric 2.30 ADI Gallego et al. 2012

GAS 4BOF Homodimeric 2.48 ADI Henningham et al. 2013
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D277A ADI mutants have been finally selected in a
GAS vaccine preparation (Henningham et al. 2013).

Protein engineering of ADI

Although various organisms could produce ADI, the enzyme
yield and characterization are usually unsatisfactory. Since the
first complete nucleotide sequence of ADI gene was cloned
fromM. arginini (Kondo et al. 1990), most studies have been
focused on the heterologous expression and protein engineer-
ing of ADIs (especially for the PpADI) for improved proper-
ties (Ni et al. 2009; Zhu et al. 2010a, b; Ni et al. 2011; Zhu
et al. 2014; Cheng et al. 2015a; Jamil et al. 2015). The detailed
engineering methods and results are summarized in Table 2.

Intensive studies have been carried out on the protein en-
gineering of P. plecoglossicida ADI (PpADI) by
Schwaneberg’s group and our laboratory (Fig. 3) (Ni et al.
2009; Ni et al. 2011; Zhu et al. 2010a, b; Zhu et al. 2014;
Cheng et al. 2015a; Jamil et al. 2015). ADI encoding gene
(arcA) from P. plecoglossicida CGMCC2039 was cloned and
expressed in Escherichia coli (Liu et al. 2008; Ni et al. 2009).
The recombinant PpADI showed effective inhibition on H22
tumor growth in mice. However, the recombinant PpADI had
a specific activity of 4.76 U/mg at optimum pH 6.0 and lost
approximately 90 % activity when pH shift to 7.4, which
limits its application as an antitumor drug (the physiological
pH of human plasma is 7.35 to 7.45). Additionally, its Km

value was 2.88 mM, which was more than 20 times of the
serum arginine level (100–120 μM). Therefore, improving the
properties of ADI is urgently necessary.

High-throughput screening approaches

Directed evolution is a common and versatile method ap-
plied in protein engineering, and appropriate High-
throughput screening (HTS) methods are often considered
to be one crucial factor. To obtain ADI mutants with ex-
cellent properties, a number of HTS methods have been
investigated and established. For instance, based on the
carbamido-diacetyl reaction method (Archibald 1944),
Zhu et al. (2010a) developed and validated an adapted

citrulline-screening protocol in microtiter-plate format for
ADI directed evolution. This microtiter-plate-screening
procedure was improved by simplifying the handling pro-
cess, such as lowering the color-development temperature,
increasing the diacetylooxime concentration and avoiding
the use of the sensitizer thiosemicarbazide. To isolate ADI
variants with high activity at low arginine concentrations,
the HTS method was further modified by lowing the argi-
nine concentrations (from 100 to 1 mM) and adjusting ADI
reaction time (from 15 to 10 min) (Zhu et al. 2010b).
Subsequently, to isolate ADI mutants with higher activity
and lower Km values under physiological pH, a rapid and
precise two-step plate to plate screening procedure was
developed, in which colonies on IPTG-agar plate instead
of tedious liquid cultivation was directly used for activity
assay (Ni et al. 2011). Recently, a more sensitive screening
system based on ammonia detection was established in a
96-well microtiter plate to reliably detect ≥0.005 mM am-
monia (Cheng et al. 2015a). Cheng and coworkers also
developed a novel flow cytometry screening approach
based on a competitive conversion/binding of arginine be-
tween ADI and arginine repressor at low substrate concen-
trations under physiological conditions (Cheng et al.
2015b).

Improving pH optimum

Low pH optimum of ADI is one major limitation factor for its
clinical application, many efforts have been performed to im-
prove the pH optimum. For example, one mutant M2 (K5T/
D44E/H404R) with an optimum pH 7.0 was obtained by di-
rected evolution, which was enhanced by 1.0 pH units com-
pared with wild-type PpADI. Additionally, at the physiologi-
cal pH 7.4, the mutant M2 retained about 50 % of its maximal
activity (at pH 7.0), compared with about 10 % in the case of
theWT PpADI (Zhu et al. 2010a). It has been reported that the
mutagenesis at position 405 played an important role in mod-
ulating the pH optimum of ADI from P. aeruginosa. One
mutant H405R exhibited enhanced pH optimum from 5.5 to
6.5. However, these mutants exhibited increased Km values
compared with the WT (Ding et al. 2012).

Fig. 2 The crystal structure of
ADI from P. aeruginosa (PDB:
2A9G). (Cys406 is displayed in
the crystal structure of ADI (PDB:
1RXX), with 2A9G
superposition)
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Improving Km and kcat values

To isolate PpADI variants with low Km value and high kcat
value, M6 (K5T/D38H/D44E/A128T/E296K/H404R) was
obtained using improved HTS protocol, and its Km value
was decreased by 47.6 % while kcat value was increased for
63.7-fold compared with theWTPpADI (Zhu et al. 2010b). In
our previous study, one excellent mutant M314 (A128T/
H404R/I410L) exhibited 20-fold increased specific activity
and the decreased Km value of 0.65 mM (at pH 7.4) (Ni et
al. 2011). To further reduce the Km value and improve the
activity of PpADI, the mutant M19 (K30R/C37R/L148P/
V291L) with higher kcat value (21.1 s−1; 106.5-fold of WT
PpADI) and lower Km value (0.35 mM) at physiological pH
was obtained (Cheng et al. 2015a). Lately, one mutant M13-5
(D38H/A128T/E296K/H404R/I410L/R243L) with the lowest
Km value (0.16 mM) was identified by semi-rational engineer-
ing in our laboratory, and its specific activity was 31.2U/mg at
physiological conditions (Jamil et al. 2015).

Improving the thermostability

In addition to high activity and low Km under physiological
conditions, thermostability is an important prerequisite. ADI
with high thermostability at 37 °C is favorable in medical
application and capable of reducing dosage in each treatment.
Using mutant PpADI M6 (K5T/D38H/D44E/A128T/E296K/

H404R) as a template, one directed evolution based on citrul-
line detection system was employed to enhance its thermosta-
bility. One mutant M9 (K5T/D38H/D44E/A128T/V140L/
E296K/F325L/H404R) was obtained, and its Tm value was
increased from 47 (M6) to 54 °C (M9), corresponding to an
prolonged half-life from about 2 days (M6) to 3.5 days (M9).
The possible explanation is that two substitutions V140L and
F325L are favorable for the formation of tetrameric PpADI
with greater thermal resistance than dimeric one (Zhu et al.
2014). In addition, semi-rational engineering was performed
on mutant PpADI M13 (D38H/A128T/E296K/H404R/
I410L) to yield a thermostable mutant M13-9 (D38H/
A128T/E296K/H404R/I410L/A276W), whose half-life was
enhanced from 4 min (M13) to 17.5 min (M13-9) at 60 °C.
Furthermore, M13-9 also displayed a remarkable enhance-
ment on pH stability, which retained over 90 % activity over
pH range from 4.5 to 8.5.

PEGylation of ADI for improved circulating half-life,
immunogenicity, and thermostability

Generally, native ADIs exhibit short plasma half-life in vivo
due to proteolytic degradation, fast kidney clearance, and in-
tense host immunoresponse. To overcome this problem, mod-
ification of ADI with polyethylene glycols (PEGs) has been
developed and confirmed to increase circulating half-life and
decrease immunogenicity (Pasut and Veronese 2009). ADI

Fig. 3 Schematic presentation of heterologous expression and protein engineering of ADI from P. plecoglossicida CGMCC2039. (epPCR error prone
PCR; SDM site-directed mutagenesis; SSM site-saturation mutagenesis; SeSaM sequence saturation mutagenesis)
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PEGylation is a technology that ADI is conjugated with PEGs
of appropriate molecular weight, shape, and linkers for protein
attachment. Based on comparison of PEGs with various mo-
lecular weights, the formulation of ADI with PEG of 20,
000 mw (ADI-PEG20 kDa) showed a best pharmacokinetic
(pK) and pharmacodynamic (pD) properties. Furthermore,
the structure (linear or branched chain) and linker chemistries
of PEG did not significantly affect the specific activity of the
ADI-PEG as long as one mole of ADI is conjugated with 8–
12 mol of PEG (Holtsberg et al. 2002).

In our previous study, the PEGylation and pharmacological
properties of an engineered PpADI M13-3 (D38H/A128T/
E296K/H404R/I410L/Q162S) have been investigated. The
enzyme was modified by bioconjugating different polyethyl-
ene glycol (PEG) reagents with succinimidyl ester groups var-
ied in size and linkers, and yielded products ADI-PEG-
SS20 KDa, ADI-PEG-SC20 KDa, and ADI-PEG-SPA20 KDa.
The pharmacodynamic/pharmacokinetic (PD/PK) analysis
showed that ADI-PEG-SPA20 KDa exhibited the most signifi-
cant improvement in circulating half-life (from 4.7 to 53.2 h)
and serum arginine depletion compared with free ADI.
Furthermore, in mice implanted with H22 tumors, ADI-
PEG-SPA20 KDa showed a greater inhibition (95.02 % of in-
hibition rate) on tumor growth than the free ADI (98.34 % of
inhibition rate) with the same dosage (15 U) (Zhang et al.
2015). Additionally, PEGylation of ADI has been also proved
with enhanced thermal stability recently. A novel thermosta-
ble, ADI from thermophilic A. fumigatus KJ434941 was pu-
rified and PEGylated. Comparison of the free ADI and PEG-
ADI, PEG-ADI showed higher thermal stability although its
specific activity was slightly reduced (El-Sayed et al. 2015).

Application of ADI in clinical trials

ADI treatment for ASS1-deficient cancer

ADI has been intensively investigated as a potential anti-
tumor drug. A number of clinical investigations confirmed
that arginine depletion by ADI or PEGylated ADI (from
Mycoplasma species) played an important role in the treat-
ment of various ASS1-deficient xenograft tumor models
(as seen in Table 3). For example, PEGylation of
Mycoplasma ADI was found to be a safe, well tolerated
drug for the treatment of unresectable HCC (Glazer et al.
2010, Yang et al. 2010). It has been demonstrated that
ADI-PEG 20 could consistently deplete arginine and effec-
tively cure advanced melanoma (Ott et al. 2013). ADI-
PEG20 kDa could also selectively eliminate arginine from
the circulation and against small-cell lung cancer (Kelly et
al. 2012, Walts et al. 2015). ADI-PEG20 kDa treatment in
ASS1-deficient breast cancer could induce cell autophagy-
dependent death by generating mitochondrial damage,

mTOR and 3KP13K pathways inhibition, or nucleotide
and protein synthesis impairment (Phillips et al. 2013;
Qiu et al. 2014). In addition, ADI has also been proved
to have a good efficacy on mesothelioma (Szlosarek et al.
2013), sarcomas (Van Tine et al. 2013), lymphomas
(Delage et al. 2012), and glioblastoma (Fiedler et al. 2015).

However, in some clinic therapy, insensitivity to ADI treat-
ment was found to associate with the induced expression of
ASS, which may contribute to failure of ADI treatment (Feun
and Savaraj 2006). Subsequently, ASS expression was found
to be transcriptionally induced by ADI in melanoma cell lines
A2058 and SK-MEL-2 and correlated with resistance to ADI
treatment. The transcription mechanism may be related to the
region near AS promoter that contains an E-box recognized by
c-Myc and HIF-1α and a GC-box by Sp4. The E-box is bound
by HIF-1α under noninduced conditions while HIF-1α is re-
placed by c-Myc under arginine depletion conditions. Thus,
overexpression of c-Myc by transfection could upregulate
ASS expression, whereas co-transfection with HIF-1α could
suppress c-Myc-induced ASS expression. It suggests that reg-
ulation of ASS expression relates to interplay among positive
transcriptional regulators c-Myc and Sp4, and negative regu-
lator HIF-1α which confers resistance to ADI treatment (Tsai
et al. 2009).

ADI treatment for other diseases

Besides multiple ASS1-deficient tumors, ADI is also a po-
tential therapeutic treatment for other diseases (as seen in
Table 3). For instance, as a potential anti-angiogenic agent,
the recombinant ADI exhibited an inhibitory effect on the
growth of human umbilical vein endothelial cells, which
could lead to solid tumors (Beloussow et al. 2002).
Recombinant ADI was also well applied for neurodegen-
erative diseases therapy by protecting cells from inducible
nitric oxide synthase-mediated toxicity, although ADI has
deleterious effects on nNOS-activated neurons (Lin et al.
2014). Furthermore, PEGylated ADI has been confirmed to
have a therapeutic efficacy in the treatment of relapsed/
refractory and/or elder acute myeloid leukemia (Ariza-
McNaughton et al. 2013; Tsai et al. 2014). It has been
indicated that PEGylated ADI was able to significantly
decrease disease index, serum amyloid A level, and inflam-
matory cytokines in colonic explants to provide protection
against colitis (Oz et al. 2012). Henningham and co-
workers indicated that ADI from GAS could be used as a
GAS vaccine candidate to protect mice against GAS infec-
tion (Henningham et al. 2012; Henningham et al. 2013). In
addition, Marini and Didelija (2015) confirmed that ADI-
PEG 20 therapy would not affect whole protein metabo-
lism or muscle fractional protein synthesis rate during ADI
treatment.
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ADI synergistic therapy with other agents

PEGylated ADI treatment combining with other drugs
together often leads to better efficacy (Table 3). For
instance, cytarabine chemotherapy with an anthracycline
antibiotic is the backbone of acute myeloid leukemia
(AML) induction treatment, which has remained un-
changed during the past 50 years. ADI-PEG 20 may
confer caspase activation, leading to apoptosis in sensi-
tive AML. The combination of ADI-PEG20 kDa treat-
ment and cytarabine chemotherapy was more effective
than either treatment alone in the therapy of AML
in vivo (Miraki-Moud et al. 2015). Synergistical combi-
nation of ADI-PEG and gemcitabine could cause growth
arrest , leading to increased tumor response in
vivo. Therefore, PEGylated ADI could inhibit the
gemcitabine-induced expression of ribonucleotide reduc-
tase subunit M2 (RRM2) levels, which confers
gemcitabine resistance (Daylami et al. 2014). Savaraj
and coworkers found that arginine deprivation could in-
hibit mTOR signaling while activate MEK and ERK
with no changes in BRAF, resulting in cell survival by
recycling intracellular arginine. Combination of ADI-
PEG 20 and cisplatin or MEK inhibitor was proved to
increase apoptosis or inhibit the autophagic process in
melanoma cell lines, which could increase the therapeu-
tic efficacy of melanoma treatment (Savaraj et al. 2010).
Furthermore, McAlpine and coworkers indicated that
ASS1 silencing in HCC cell lines is associated with
simultaneous sensitivity to ADI-PEG 20 and resistance
to cisplatin, and the combination strategy of ADI-PEG

20 and cisplatin is effective in HCC treatment
(McAlpine et al. 2014).

Conclusion and perspectives

ADI is commonly considered to be a potential agent for var-
ious arginine-auxotrophic tumors therapy. Although many
studies on ADI have been reported in the past few decades,
work still needs to be performed for the more effective appli-
cation of ADI. Here, simple perspectives on ADI are also
provided (Fig. 4).

Improving extracellular secretion of ADI

In previous reports, most recombinant ADIs were heter-
ologously expressed in E. coli hosts as intracellular en-
zyme, which increases difficulties for the further mas-
sive production and purification. Therefore, improving
the extracellular secretion of ADI is critical for its effi-
cient production and application. Several possible ap-
proaches may be used for improving the extracellular
expression of ADI. Non-E. coli hosts, such as Bacillus
subtilis, could be selected as ADI expression hosts.
Compared with the Gram-negative bacterium, B. subtilis
has the naturally highly secretory capacity for extracel-
lular expression, and avoids codon preference and inclu-
sion body problems. Besides, signal peptide could me-
diate the extracellular expression of proteins (Mergulhao
et al. 2005). Choosing the suitable signal peptide for
different proteins is important for the extracellular

Fig. 4 Our perspectives on ADI
study
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secretion system, which has been previously summa-
rized (Low et al. 2013). Modification of signal peptides
is another important approach. Wu’s group demonstrated
that increasing the signal peptide cleavage sites (Chen et
al. 2011) and translational initial region (TIR) degener-
acy mutagenesis of pelB signal peptide (Liu et al. 2011)
could improve the extracellular production of recombi-
nant enzyme in E. coli.

Improving enzymatic properties of ADI

As a potential candidate for the therapy of arginine-
auxotrophic tumors, ADI’s properties under physiological
conditions directly affect its clinical applications. Although
many marvelous successes in ADI engineering for properties
improvement have been reported during the past few decades,
more work still needs to be done to improve its defective
properties. In previous reports, great improvements on ADI’s
properties have been achieved by directed evolution and site-
directed mutagenesis approaches. For example, in PpADI,
positions 44 and 404 are confirmed to be important for pH
optimum and kcat value improvements (Zhu et al. 2010a);
positions 30, 37, 148, and 291 contribute to Km value im-
provement (Cheng et al. 2015a); positions 140 and 325 are
key sites for improving the thermostability of ADI (Zhu et al.
2014); and position 162 possibly affects the soluble expres-
sion of ADI (Jamil et al., 2015). However, one mutant with
multiple property improvements, including physiological pH
optimum, high activity and kcat value, high thermostability,
half-life and soluble expression, and low Km value, has not
been attained. Therefore, iterative saturation mutagenesis
could be employed on the beneficial sites to evolve mutants
with multiple improved properties. Furthermore, rational and
semi-rational engineering based on bioinformatics and struc-
ture analysis are necessary to identify more possible key site
residues and regions for improved properties. Taken together,
the achievements on ADI obtained so far are still limited, and
considerable efforts on ADI properties improvement are nec-
essary in future.
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